Introduction | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The recipe for this cake required knowledge of measurement and the use of fractions. Scientists rely on numbers and math to help them describe their ideas and observations. Math is critical to science, from the study of gravity to chemical equations to climate change. In this lesson, you will review basic math concepts that will be helpful to you in this course. You will also learn how to express very large and very small numbers using scientific notation. Use the Practice Problems after each section to test your understanding of each concept. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
What Math Concepts Are Used in Physical Science? | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In science, numbers are used for comparisons and measurements. Below, you can review some of the different ways to compare numbers, such as mean and decimals. You will also have a chance to review how to do some basic calculations involving numbers with decimals, fractions, and/or percentages as well as review basic algebra skills. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mean Mean, sometimes called average, gives the "middle of the road" for a set of data. To find the mean, take the sum of all the data in a set and divide it by the total number of items of data.
For example: Find the mean of the set. 2, 2, 3, 0, 4, 0, 6, 5, 17, 10, 9, 2, 1, 9
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Decimals
Numbers with decimals are used often in science. They allow for very precise values when collecting or comparing data and taking measurements. It is important to understand the value of decimal places and to be able to compare decimal numbers. For example, which of the following numbers is greater?
Compare decimal numbers by comparing one digit at a time, from left to right. Make sure to compare digits in the same place values. Using a place value chart is helpful when doing this. Look at the place value charts below.
You do not have to compare any more digits. You now know that 1.513 is the greater number.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Reviewing Decimal Computations In this course it is important to be able to add, subtract, multiply, and divide numbers with decimals. Use the table to review the steps and solve the problems below.
For example: Solve.
Multiplying decimals is a lot like multiplying whole numbers. There are just a few extra steps at the end.
Notice that the first step of multiplying is not the same as for adding and subtracting. With multiplying, only think about the decimal point after completing the multiplication. For example: Solve.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fractions Numbers may also be expressed as fractions. A fraction is a portion of a whole number. Recall that the numerator is the number on top and the denominator is the number on the bottom. Use fractions to show rates and proportions, which are different ways to compare numbers. A rate is a comparison of two values using units. For example, a rate is used when comparing the number of miles a car has driven to the number of gallons of gas it has used. A unit rate is a rate with a denominator of 1, such as a mile per gallon. Fractions are most often expressed in simplest form. When a fraction is in simplest form, the numerator and denominator have no common factor except 1. Simplest form is obtained when all of the factors shared by the numerator and denominator have been cancelled out by factoring, reducing, or simplifying. For example: Reduce the fraction below to its simplest form.
Reviewing Fraction Computations It is important to know how to multiply and divide fractions because they are used in this course to convert between different units of measurement. Follow these steps to multiply fractions.
Always multiply straight across. Never multiply the top by the bottom or the bottom by the top. For example: Solve. Dividing fractions is almost the same as multiplying them. To divide by a fraction, multiply by its reciprocal. The reciprocal of a fraction is the inverse. To find the reciprocal, flip over the fraction. The denominator becomes the numerator and the numerator becomes the denominator. For example, the reciprocal of 2/3 is 3/2. Once you find the reciprocal, rewrite the problem as multiplication.
For example: Solve.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Percentages In physical sciences like chemistry and physics, percentages are used to describe and compare many different types of data. A percentage is a way of expressing a number as a fraction of 100. Percentages can also be expressed as small numbers less than 1, as shown below.
The different ways of expressing percentages can be used to solve problems.
How do you calculate percentage? For example: A teacher buys a 6-foot sub sandwich for a classroom celebration. He cuts it into 24 equal pieces. By the end of class, 75% of the sandwich has been eaten. How many pieces did the students eat?
The students ate 18 pieces. To convert a fraction to a percentage, divide the numerator by the denominator. The result is a decimal number. Convert it to a percentage by multiplying by 100. For example: A teacher buys a 6-foot sub sandwich for a classroom celebration. He cuts it into 24 equal pieces. By the end of class, 18 pieces of the sandwich have been eaten. What percentage of the sandwich did the students eat?
The students ate 75% of the sandwich. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Algebra Many concepts in physical science are explained and solved using basic algebra. For this, an understanding of variables is necessary. This section is a review of those basic algebra skills.
For example: Solve for m.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Scientific Notation
Scientific notation is a shorthand method used to express very large or very small numbers. In scientific notation, the numbers are written as values between 1 and 10, and multiplied by a power of 10. Look at the table. Each power of 10 adds another zero, and moves the decimal point one place to the right. If the exponent is negative, the decimal point moves that number of times to the left. Each power of 10 adds another zero between the number and the decimal. Remember that any number to the first power is equal to itself. Any non-zero number to the zero power is equal to 1. When reading numbers in scientific notation, look at the exponent on the 10. Moving the decimal to the right or left that number of times produces the original number.
To convert a number into scientific notation follow the steps in the table below.
How do you write 810,000,000 in scientific notation?
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Think About It Why would it be especially useful for astronomers to use scientific notation? | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
For example: The planet Mercury is about 57 million km from the Sun. What is this distance in scientific notation?
|
Thursday, October 14, 2010
Lesson 2: Math Concepts for Physical Science
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment